Suspended Load, Full Complement, Cageless Radial Bearing

Votes: 0
Views: 150

Design for a radial bearing where the load the bearing supports is actually suspended from its components rather than supported by them. As such, the design is intended for light load application where it's important that the bearing generate no or minimum amplitude vibrations due to unevenly sized rolling elements owing to manufacturing tolerances. Additionally, any axial loads should be supported by an altogether separate axial bearing, which this bearing design should always be employed in tandem with, for those applications where any axial forces are expected.

The bearing's inner track (the green ring in the renders) is the innermost component of the bearing and also has the smallest internal diameter. It is the only part of the bearing which comes in direct contact with the shaft the bearing is supporting (the inner diameter of the bearing's outer track is necessarily larger than the inner diameter of its inner track).

Comprised of two symmetrical circular pieces (the cyan and magenta rings in the renders), the bearing's outer track is its outermost component and the internal diameter of its outer wall is slightly larger than the external diameter of the suspension ring (the red component in the renders – the next outermost part of the bearing), so as to achieve a slight gap between the outer surface of the suspension ring and the inward face of the bearing's outer track's external wall.

Although it might not be readily apparent from the renders, the diameter of the bearing's outer track's innermost surface is larger (though not by a lot) than the diameter of the bearing's inner track's innermost surface.

The load picked up by the inner track directly from the shaft the bearing is supporting is transferred to the row of shorter rollers (coloured yellow in the renders) immediately outside the inner track, which it rides on. These, in turn, transfer the load on to the second layer of rollers, which are the next innermost components of the bearing, further out from the centre of the bearing than the inner layer.

This outer row of rollers, in turn, pass the load to the suspension ring which carries it to the top of the bearing, where it is then conveyed back to the outer rollers which then transfer it to the inward overhang of the bearing's outer track's halves.

The bearing's load is thus suspended from these internal overhangs of its outer track, by way of the suspension ring which picks up the load from the bottom of the bearing and carries it to its top.

The bearing employs two rows of rollers (which have the same number of elements) so that any two consecutive rollers within the same row are kept apart by a roller from the other, avoiding load bearing sliding contact between any two rollers.

The outer rollers are longer because they need to span the inward overhangs of the bearing's outer track, so as to suspend the bearing's inner track from its outer track.


Voting is closed!


  • Name:
    Laurentiu Victor Visan
  • Type of entry:
  • Profession:
  • Number of times previously entering contest:
  • Laurentiu Victor is inspired by:
    Wanting to do what is in my power to try and make the world a better place by contributing to technological development and improvement in whichever area and by whichever amount I am capable of.
  • Software used for this entry:
    Autodesk 123D Design, MOI 3D, LightTracer
  • Patent status: