Congratulations to Our 2024 Grand Prize and First Place Winners!

NETrolyze, a novel immunotherapy for triple-negative breast cancer (TNBC), was named the $25,000 grand prize winner at a live finalist round held November 15 in New York. The first-in-class therapeutic injectable gel prevents the spread of TNBC, one of the most aggressive cancer types, enabling patients to avoid toxic chemotherapy and expensive treatments – potentially transforming their lives. Click here for the full list of 2024 winners. Also see the Top 100 highest scoring entries.

Help build a better tomorrow

Since Tech Briefs magazine launched the Create the Future Design contest in 2002 to recognize and reward engineering innovation, over 15,000 design ideas have been submitted by engineers, students, and entrepreneurs in more than 100 countries. Join the innovators who dared to dream big by entering your ideas today.

Read About Past Winners’ Success Stories

Special Report spotlights the eight top entries in 2023 as well as past winners whose ideas are now in the market, making a difference in the world.

Click here to read more

A ‘Create the Future’ Winner Featured on ‘Here’s an Idea’

Spinal cord injury affects 17,000 Americans and 700,000 people worldwide each year. A research team at NeuroPair, Inc. won the Grand Prize in the 2023 Create the Future Design Contest for a revolutionary approach to spinal cord repair. In this Here’s an Idea podcast episode, Dr. Johannes Dapprich, NeuroPair’s CEO and founder, discusses their groundbreaking approach that addresses a critical need in the medical field, offering a fast and minimally invasive solution to a long-standing problem.

Listen now

Thank you from our Sponsors

“At COMSOL, we are very excited to recognize innovators and their important work this year. We are grateful for the opportunity to support the Create the Future Design Contest, which is an excellent platform for designers to showcase their ideas and products in front of a worldwide audience. Best of luck to all participants!”

— Bernt Nilsson, Senior Vice President of Marketing, COMSOL, Inc.

“From our beginnings, Mouser has supported engineers, innovators and students. We are proud of our longstanding support for the Create the Future Design Contest and the many innovations it has inspired.”

— Kevin Hess, Senior Vice President of Marketing, Mouser Electronics

Follow Create the Future

Engine with Oscillating Rotating Pistons

Votes: 0
Views: 9985

About one-third of the fuel used in the world is for internal combustion engines in cars and trucks. Given the combustion temperatures in these engines, the theoretical efficiency is over 70%, but the efficiency of present-day car engines is about 25%. A large part of the energy loss is due to sliding friction of the pistons in the cylinders. It is well known that sliding friction can be a hundred times as great as rolling friction. If the sliding friction of pistons could be replaced by rolling friction, much higher efficiency engines could be produced.

We have patented a revolutionary new engine called “MECH” that substitutes rolling friction for sliding friction in internal combustion engines. “MECH” stands for Motor, Expander, Compressor, and Hydraulics, since it can be adapted to internal combustion engines, gas expanders, compressors, or hydraulic pumps or hydraulic motors. Besides having less friction, the MECH engine’s novel geometry provides three times the displacement (and hence three times the power) of a standard car engine of the same size. Or a MECH engine of the same power would be one-third the size. By having a lighter, more efficient engine, energy is conserved.

Figure 1 shows a simplified cross section of MECH. Rotating piston 1 rolls against rotating piston 2 at the point of contact, forming a rolling seal that prevents gases from flowing from high to low pressure regions. When rotating piston 1 rotates clockwise and rotating piston 2 rotates counter-clockwise, fuel-air mixtures in chambers 3 and 4 are compressed. A spark ignites the mixture, and the resulting explosion causes the pistons to rotate in the opposite directions, compressing fuel-air mixtures in chambers 5 and 6. Combustion in those chambers reverses the directions of the rotating pistons.

The pistons do not touch the cylinder walls. Sliding friction occurs at the ends of the pistons where special seals are installed, but since the pistons can be long compared to the diameter, this friction is small. The shafts exit through the end plates where they are connected to gearwheels that rotate together. A crank rod connects one of the gearwheels to a flywheel.

MECH can have more than two pistons in the block.

It is projected that MECH efficiency will be 30% higher than a standard engine. The fact that it is lighter and smaller will allow a lighter-weight car, which will also increase gas mileage. A MECH expander, which we built (see Figure 2), was tested and compared to a regular piston expander of the same displacement. 13 psi of air pressure was required to keep the regular piston expander running. Below that pressure, friction caused the engine to stop running. A scroll compressor of the same size required 8 psi to keep it running. The MECH expander required only 1 psi to keep it running.

Figure 3 provides a perspective view of MECH.

The market for MECH as internal combustion engines and air-conditioning compressors is huge. MECH can also be used in chain saws and lawn mowers.

  • Awards

  • 2012 Top 100 Entries

Voting

Voting is closed!

  • ABOUT THE ENTRANT

  • Name:
    Melvin Prueitt
  • Type of entry:
    individual
  • Profession:
    Scientist
  • Number of times previously entering contest:
    2
  • Melvin's favorite design and analysis tools:
    I write my own scientific computer programs.
  • For managing CAD data Melvin's company uses:
    My own Fortran programs
  • Melvin's hobbies and activities:
    Inventing, computer graphics
  • Melvin belongs to these online communities:
    LinkedIn
  • Melvin is inspired by:
    I want to help provide renewable energy to help the world be a better place. I want to provide fresh water to those who do not have good water. I want to improve the efficiency of OTEC power plants.
  • Software used for this entry:
    My own computer programs.
  • Patent status:
    patented