Congratulations to Our 2024 Grand Prize and First Place Winners!

NETrolyze, a novel immunotherapy for triple-negative breast cancer (TNBC), was named the $25,000 grand prize winner at a live finalist round held November 15 in New York. The first-in-class therapeutic injectable gel prevents the spread of TNBC, one of the most aggressive cancer types, enabling patients to avoid toxic chemotherapy and expensive treatments – potentially transforming their lives. Click here for the full list of 2024 winners. Also see the Top 100 highest scoring entries.

Help build a better tomorrow

Since Tech Briefs magazine launched the Create the Future Design contest in 2002 to recognize and reward engineering innovation, over 15,000 design ideas have been submitted by engineers, students, and entrepreneurs in more than 100 countries. Join the innovators who dared to dream big by entering your ideas today.

Read About Past Winners’ Success Stories

Special Report spotlights the eight top entries in 2023 as well as past winners whose ideas are now in the market, making a difference in the world.

Click here to read more

A ‘Create the Future’ Winner Featured on ‘Here’s an Idea’

Spinal cord injury affects 17,000 Americans and 700,000 people worldwide each year. A research team at NeuroPair, Inc. won the Grand Prize in the 2023 Create the Future Design Contest for a revolutionary approach to spinal cord repair. In this Here’s an Idea podcast episode, Dr. Johannes Dapprich, NeuroPair’s CEO and founder, discusses their groundbreaking approach that addresses a critical need in the medical field, offering a fast and minimally invasive solution to a long-standing problem.

Listen now

Thank you from our Sponsors

“At COMSOL, we are very excited to recognize innovators and their important work this year. We are grateful for the opportunity to support the Create the Future Design Contest, which is an excellent platform for designers to showcase their ideas and products in front of a worldwide audience. Best of luck to all participants!”

— Bernt Nilsson, Senior Vice President of Marketing, COMSOL, Inc.

“From our beginnings, Mouser has supported engineers, innovators and students. We are proud of our longstanding support for the Create the Future Design Contest and the many innovations it has inspired.”

— Kevin Hess, Senior Vice President of Marketing, Mouser Electronics

Follow Create the Future

Device for Control Over Drive of Valve for ICE

Votes: 0
Views: 6051
Transportation

Introduction
Today’s world is concerned about the depletion of natural resources and the impact of human activity on the environment. Making automotive transportation more efficient is one of the major goals of engineering research. Ideas in unconventional areas tend to be economically and technologically untested while internal combustion engines still hold significant unrealized potential.

Current limitations
Variable valve timing and lift solutions have been widely employed to gain efficiency. However, existing devices and methods have several limitations, including restricted ranges of adjustments of valve stroke and inability to deactivate valves in the process of engine operation within one revolution of the camshaft. These limitations negatively impact volumetric efficiency, energy conversion efficiency, specific fuel consumption, and exhaust toxicity. Existing mechanisms of cylinder deactivation only work with fixed groups of cylinders and create complications such as thermal imbalances, uneven wear, and unstable transition regimes.

Proposed solution
The presented electronically controlled hydro-electrical mechanism of valve lift and valve timing regulation with flexible cylinder deactivation solves or reduces the above problems by employing a principle of the balance scale: a valve spring on one end acts against a hydro-electrical system on the other end through a lever and a floating fulcrum. This device allows adjustments of both valve lift and timing, deactivation of valves in one or several cylinders, and alterations in the order and number of working cylinders. Starting, idling, partial/full load regimes are optimized from a continuous range of relationships between valve timing and lift and all possible algorithms of cylinder activation. Valves can be opened and closed two-three times during one stroke. The transition from one regime to another happens during one or four strokes, depending on crankshaft rotation speed. Valve opening duration can be adjusted by narrowing the range at low engine speeds and widening it as the engine speed increases, keeping maximum valve lift or lowering it. Application of this invention would bring significant improvements in engine efficiency, elasticity, and toxicity without sacrificing maximum attainable power and torque. The curve of specific fuel consumption is lowered and straightened in the entire range of engine’s operation. The solution can be implemented through existing economically viable technologies. The global annual market value of engines equipped with the device can reach $50-100bln.

Technical abstract
The device consists of camshaft (4) with cams (5), lever-pusher (6) with movable bracket (8), core pin (27), electromagnet (28) of valve stroke, guide (7) of valve drive, controlling hydro-cylinder (30), and electromagnet (13) of valve timing regulation. Lever-pusher (6) contains roller (11) kinematically connected with cam (5). Movable bracket (8) is coupled with core rod (12) of electromagnet (13). Lever-pusher (6) acts on valve (2) and is connected with guide (7) via fulcrum pin (25). Fulcrum pin (25) is located in a through slot (26) of core-rod (27). Guide (7) is installed in controlling hydro-cylinder (30). Core pin (27) rests on piston (31) of controlling hydro-cylinder (30). Spring (33) is installed between guide (7) and core pin (27).

Diagrams provide examples of achievable lift/timing functions.

  • Awards

  • 2012 Top 100 Entries

Voting

Voting is closed!

  • ABOUT THE ENTRANT

  • Name:
    Yury Kostyukovich
  • Type of entry:
    individual
  • Profession:
    Engineer/Designer
  • Number of times previously entering contest:
    never
  • Yury's favorite design and analysis tools:
    Drawing board, paper and pencil.
  • Yury's hobbies and activities:
    Designing and building cars
  • Yury belongs to these online communities:
    None
  • Yury is inspired by:
    Creative process
  • Software used for this entry:
    none
  • Patent status:
    patented