Congratulations to Our 2024 Grand Prize and First Place Winners!

NETrolyze, a novel immunotherapy for triple-negative breast cancer (TNBC), was named the $25,000 grand prize winner at a live finalist round held November 15 in New York. The first-in-class therapeutic injectable gel prevents the spread of TNBC, one of the most aggressive cancer types, enabling patients to avoid toxic chemotherapy and expensive treatments – potentially transforming their lives. Click here for the full list of 2024 winners. Also see the Top 100 highest scoring entries.

Help build a better tomorrow

Since Tech Briefs magazine launched the Create the Future Design contest in 2002 to recognize and reward engineering innovation, over 15,000 design ideas have been submitted by engineers, students, and entrepreneurs in more than 100 countries. Join the innovators who dared to dream big by entering your ideas today.

Read About Past Winners’ Success Stories

Special Report spotlights the eight top entries in 2023 as well as past winners whose ideas are now in the market, making a difference in the world.

Click here to read more

A ‘Create the Future’ Winner Featured on ‘Here’s an Idea’

Spinal cord injury affects 17,000 Americans and 700,000 people worldwide each year. A research team at NeuroPair, Inc. won the Grand Prize in the 2023 Create the Future Design Contest for a revolutionary approach to spinal cord repair. In this Here’s an Idea podcast episode, Dr. Johannes Dapprich, NeuroPair’s CEO and founder, discusses their groundbreaking approach that addresses a critical need in the medical field, offering a fast and minimally invasive solution to a long-standing problem.

Listen now

Thank you from our Sponsors

“At COMSOL, we are very excited to recognize innovators and their important work this year. We are grateful for the opportunity to support the Create the Future Design Contest, which is an excellent platform for designers to showcase their ideas and products in front of a worldwide audience. Best of luck to all participants!”

— Bernt Nilsson, Senior Vice President of Marketing, COMSOL, Inc.

“From our beginnings, Mouser has supported engineers, innovators and students. We are proud of our longstanding support for the Create the Future Design Contest and the many innovations it has inspired.”

— Kevin Hess, Senior Vice President of Marketing, Mouser Electronics

Follow Create the Future

The Integrated Off-Shore Wave Powered Turbine Shaft (OSWPTS)

Votes: 0
Views: 6365

The Integrated Off-Shore Wave Powered Turbine Shaft (OSWPTS) solves the problem of un-tapped energy and wasted spaces. OSWPTS does so by utilizing un-tapped space within the shaft that supports an off-shore wind turbine and using it to maximize energy output by integrating the wind power technology with wave power technology. Currently off-shore wind turbines exist off the coast of Ireland and are beginning to pop up everywhere. These towers supporting the turbines are the perfect place to harness wave powered energy because of the constant ebb and flow (fall and rise) of the ocean.

The OSWPTS shaft has holes near the sea-floor which allows the water pressure on the inside of the shaft to equalize with the exterior water pressure. As the water surrounding the shaft ebb and flow, the water within the shaft 10+/- feet in diameter ebb and flow as well, which in-turn causes the air within the shaft to fluctuate up and down. This movement of air then pushes its way through a Wells Turbine located in the upper end of the shaft, creating clean wave powered energy! Air vents above the Wells Turbine allow air to flow in and out of the shaft and also allow maintenance workers access to the inside components for maintenance or repairs.

The Wells Turbine is perfect for this application because even with the change in direction of air-flow, the turbine always spins the same way, so it doesn’t have stop and reverse, it maintains its blade momentum. With every 1 foot of ebb and flow within the OSWPTS, 78.5 cubic feet of air travels through the Wells Turbine, adding a substantial amount of energy output to the wind powered turbine site.

There are currently devices built onto shorelines that use wells turbines in a similar way to create wave powered energy, but there aren’t any that have been designed to mount to the sea-floor or that integrate into the off-shore wind turbine. With the surge in energy independence and need for reducing our dependency on oil, it is important that we utilize the technology and space we have to optimize our energy output, to meet our growing energy needs.

These shafts can be produced from steel, concrete or other materials and can range in size and output potential. Concrete for submersion and stability around the base could be pre-cast or poured onsite. Integration into a wind turbine shaft isn’t necessary; this design can be easily dropped into place in locations that have ebb and flow. Smaller OSWPTS can even be placed at the end of piers or docks, wherever power is needed.

  • Awards

  • 2012 Top 100 Entries

Voting

Voting is closed!

  • ABOUT THE ENTRANT

  • Name:
    Bijan Masoumpanah
  • Type of entry:
    individual
  • Profession:
    Engineer/Designer
  • Number of times previously entering contest:
    never
  • Bijan's favorite design and analysis tools:
    Solidworks, Revit MEP and AutoCad.
  • Bijan's hobbies and activities:
    Outdoors with kids, playing baseball, riding bikes
  • Bijan belongs to these online communities:
    autodesk community, facebook, phi-theta-kappa
  • Bijan is inspired by:
    The opportunity to create something great, something that will raise people eyebrows, but at the same time brings solutions to issues that are important to me and others. I want to be part of the solution, not the problem. When I was young I admired physicists and inventors such as Einstein and Benjamin Franklin, which I think sparked my creative thinking. After being paralyzed in a car accident in 2004, I pushed myself to get better and to do my best at everything I do. For the last 5 years I have been a single father, my children are my inspiration for life and design. I want them to see that no matter how difficult life gets, you MUST try your best, and with time you will achieve your goals! I just graduated with my Associates Degree in Mechanical Engineering and a Certificate for Sustainability in Engineering.
  • Software used for this entry:
    SolidWorks, hand sketch, scientific calculator
  • Patent status:
    none